nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 04, v.50 21-28+123
基于组合算法数据驱动的双塔斜拉桥主梁挠度预测研究
基金项目(Foundation): 国家自然科学基金项目(52278176)
邮箱(Email):
DOI: 10.19782/j.cnki.1674-0610.2025.04.003
摘要:

为精准预测斜拉桥主梁挠度,兼顾其多尺度波动特性与长短期时序依赖关系,提出了一种基于DWT-CNN-LSTM组合算法数据驱动的斜拉桥主梁挠度预测模型。首先通过离散小波变换对挠度序列进行多尺度分解,分离不同波动成分;利用1D-CNN提取各子带序列的时间局部变形模式;引入残差模块与注意力机制改进LSTM,捕捉序列长期依赖关系;最终通过DWT逆变换重构子带预测结果,得到完整挠度序列。以某双塔斜拉桥为工程背景,开展短时段与长时段跨中挠度监测数据的训练与预测试验。结果表明:改进LSTM的损失曲线下降速率更快、稳定值更低,相较于CNN-LSTM、LSTM模型,训练效率与拟合精度显著更优;DWT-CNN-LSTM能较好地拟合长、短时段实测值的整体演变与局部波动,短时段平均相对误差约为1.61%,长时段平均相对误差约为1.12%;长时段跨中挠度预测的极大、极小值回归曲线拟合决定系数分别高达0.986 5、0.983 8,体现模型对挠度极值特征的精准复现能力;24 h尺度下模型置信区间宽度稳定,基于训练残差构建的区间有效量化长时序预测不确定性,无随时间推移的发散或突变拓宽现象。

Abstract:

To accurately predict the deflection of the main beam of a cable-stayed bridge, taking into account its multi-scale fluctuation characteristics and long short-term temporal dependencies, a data-driven prediction model for the deflection of the main beam of a cable-stayed bridge based on the DWT-CNN-LSTM combination algorithm is proposed. Firstly, the deflection sequence is decomposed into multiple scales using discrete wavelet transform to separate different wave components; extracting temporal local deformation patterns of each sub-band sequence using 1D-CNN;introducing residual modules and attention mechanisms to improve LSTM and capture long-term dependencies of sequences; Finally, the sub-band prediction results were reconstructed through DWT inverse transformation to obtain the complete deflection sequence. Conduct training and prediction experiments on short-term and long-term mid span deflection monitoring data using a certain twin tower cable-stayed bridge as the engineering background. The results show that the improved LSTM has a faster decline rate and lower stable value in the loss curve. Compared with CNN-LSTM and LSTM models, the training efficiency and fitting accuracy are significantly better; DWT-CNN-LSTM can well fit the overall evolution and local fluctuations of measured values in long and short time periods, with an average relative error of about 1.61% in the short time period and about 1.12% in the long time period; the determination coefficients of the regression curves for the maximum and minimum values of long-term mid span deflection prediction are as high as 0.986 5 and 0.983 8, respectively, reflecting the model's ability to accurately reproduce the extreme deflection characteristics; at the 24 h scale, the confidence interval width of the model is stable, and the interval constructed based on training residuals effectively quantifies the uncertainty of long-term forecasting, without any divergence or abrupt broadening phenomenon over time.

参考文献

[1] 钟正强,汤聪.基于大数据的桥梁智能管理与维护框架[J].土木工程学报,2025,58(6):69-79.

[2] 王宪玉,李文奇,朱前坤,等.基于灰度分析的桥梁健康监测系统传感器异常检测[J].湖南大学学报(自然科学版),2024,51(7):111-118.

[3] 蒲黔辉,张子怡,肖图刚,等.基于时间序列压缩分割的监测数据异常识别算法研究[J].桥梁建设,2024,54(3):15-23.

[4] 盖涛.基于离散灰色优化模型的大温差梁挠度预测模型研究[J].新疆大学学报(自然科学版),2024,41(4):497-504,512.

[5] 聂华伟,应江虹,邓捷.基于Bi-LSTM模型的桥梁健康监测挠度预测方法[J].公路,2024,69(10):213-219.

[6] 华谦.基于PSO-VMD和稀疏注意力机制改进BiLSTM的桥梁健康诊断[J].国外电子测量技术,2025,44(1):110-118.

[7] 郭永刚,张美霞,王凯,等.基于CEEMDAN-VMD-PSO-LSTM模型的桥梁挠度预测[J].安全与环境工程,2024,31(3):150-159.

[8] 张智谋,秦李冯,任伟新,等.基于工作模态参数的公路桥梁静挠度预测[J].工程力学,2025,42(5):42-48.

[9] 鞠翰文,邓扬,李爱群.桥梁结构挠度-温度-车辆荷载监测数据相关性模型[J].振动与冲击,2023,42(6):79-89.

[10] LI L L,HE Q,WANG H,et al.Midspan deflection prediction of long-span cable-stayed bridge based on DIWPSO-SVM algorithm[J].Applied Sciences,2025,15(10):5581.

[11] HA H,MANH L V,MENG D D N,et al.Hybrid machine learning model for prediction of vertical deflection of composite bridges[J].Proceedings of the Institution of Civil Engineers-Bridge Engineering,2023,178(2):99-108.

[12] 孙家正,郭东升,杨东辉,等.消除温度效应滞后影响的桥梁挠度异常监测方法[J].应用基础与工程科学学报,2025,33(1):40-49.

[13] 蒋田勇,喻晨宇,彭琦,等.基于SVMD-KLD-DWT的桥梁挠度监测数据温度效应分离方法[J/OL].中国公路学报,2025:1-23(2025-02-14)[2025-06-24].https://link.cnki.net/urlid/61.1313.u.20250213.1816.002.

[14] 徐文城,王淼.基于毫米波雷达的桥梁动挠度监测数据分离技术研究[J].公路,2024,69(11):144-155.

[15] 郑帅,姜赫,王忠昶,等.基于DWT-LSTM的桥梁挠度分离预测模型及工程应用[J/OL].工程科学与技术,2025:1-15(2025-06-10)[2025-06-24].https://link.cnki.net/urlid/51.1773.TB.20250610.1016.001.

[16] 肖新辉,刘贤,张海萍,等.基于CNN-LSTM-GD的悬索桥主梁挠度预测与预警方法研究[J].振动与冲击,2025,44(14):84-94.

[17] 邬晓光,徐凯澳,黄骞.基于深度学习的重载车辆作用下桥梁动力响应预测方法研究[J].重庆交通大学学报(自然科学版),2025,44(5):19-26.

[18] 曹佳宝,彭巍,杨飞,等.基于孪生长短时神经网络的高速公路机电系统故障预测[J].公路工程,2025,50(2):245-250.

[19] 黄立葵,李成伟,冯晓东,等.沥青路面高温温度场预估的LSTM神经网络模型[J].公路工程,2023,48(4):58-63,112.

基本信息:

DOI:10.19782/j.cnki.1674-0610.2025.04.003

中图分类号:U448.27

引用信息:

[1]郭兴,林鸣,李立峰,等.基于组合算法数据驱动的双塔斜拉桥主梁挠度预测研究[J].公路工程,2025,50(04):21-28+123.DOI:10.19782/j.cnki.1674-0610.2025.04.003.

基金信息:

国家自然科学基金项目(52278176)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文