71 | 1 | 91 |
下载次数 | 被引频次 | 阅读次数 |
地形地质复杂作为山区公路的主要特点,使山区公路在建设中具有大量高陡边坡。高陡边坡易发生滑坡、崩塌、倾倒等危害,须采取针对性的防护措施以减少边坡危害的发生。然而,高陡边坡地质信息的获取,对边坡防护措施和边坡稳定性分析具有重要的指导意义。因此,利用马尔科夫随机场理论和贝叶斯机器学习技术,建立了马尔可夫随机场(MRF)地质模型。该MRF模型能够利用稀疏钻孔数据进行模拟并获取非钻孔处的地质信息,同时利用机器学习技术进行多次模拟迭代,通过分析迭代结果准确获取高陡边坡地质信息和量化地层不确定性。此外,基于模型提出了一种能够准确获取山区公路高陡边坡地质信息的钻孔分布方法。该方法以量化的地层不确定性为驱动,在实际工程中能够指导钻孔的设置和分布。研究结果表明,基于新建MRF模型的钻孔分布方法可以高效准确地获取地质信息,从而为公路工程提质增效。
Abstract:Complex terrain and geology is the main feature of mountain road, which leads to a large number of high and steep slopes in the construction of mountain road. High and steep slope is prone to landslide, collapse, toppling and other hazards, so it is necessary to take specific protective measures to reduce the occurrence of slope hazards. However, the acquisition of geological information of high and steep slope has important guiding significance for slope protection measures and slope stability analysis. In this paper, Markov Random Field(MRF) geological model is established by using Markov Random Field theory and bayesian machine learning technique. The MRF model can use sparse borehole data to simulate and obtain geological information at non-borehole sites. At the same time, machine learning technology is used to conduct several simulation iterations, and by analyzing the iterative results, the geological information of high and steep slopes can be accurately obtained and the stratigraphic uncertainty can be quantified. In addition, based on the model, a borehole distribution method which can accurately obtain the geological information of high and steep slope of mountain road is proposed. Driven by quantified stratigraphic uncertainty, this method can guide the setting and distribution of boreholes in practical engineering. The results show that the borehole distribution method based on the new MRF model can obtain geological information efficiently and accurately, so as to improve the quality and efficiency of highway engineering.
[1] 兰思炼,胡静云.高陡边坡危岩体变形量边坡雷达监测设计方案研究[J].采矿技术,2022,22(5):96-99.
[2] 张亚楠,曹子君,高国辉,等.考虑土体参数空间变异性的浅基础扩展式可靠度设计[J].武汉大学学报(工学版),2018,51(9):753-759,777.
[3] 祁小辉,李典庆,曹子君,等.考虑地层变异的边坡稳定不确定性分析[J].岩土力学,2017,38(5):1385-1396.
[4] 蒋水华.水电工程边坡可靠度非侵入式随机分析方法[D].武汉:武汉大学,2014.
[5] 祁小辉,李典庆,周创兵,等.基于钻孔资料的耦合马尔可夫链水平方向转移概率矩阵估计[J].应用基础与工程科学学报,2017,25(5):967-984.
[6] 刘振峰,郝天珧,方辉.用Markov链模型随机模拟储层岩相空间展布[J].石油学报,2005,26(5):57-60.
[7] 李军,杨晓娟,张晓龙,等.基于三维马尔可夫链模型的岩性随机模拟[J].石油学报,2012,33(5):846-853.
[8] LI Z,WANG X R,WANG H,et al.Quantifying stratigraphic uncertainties by stochastic simulation techniques based on Markov random field[J].Engineering Geology,2016,201:106-122.
[9] BESAG J.On the statistical analysis of dirty pictures[J].Journal of the Royal Statistical Society:Series B (Methodological),1986,48(3):259-279.
[10] KOLLER D,FRIEDMAN N.Probabilistic graphical models:principles and techniques-adaptive computation and machine learning[M].Cambridge:The MIT Press,2009.
[11] CROSS G R,JAIN A K.Markov random field texture models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1983,5(1):25-39.
[12] WELLMANN J F,REGENAUER-LIEB K.Uncertainties have a meaning:information entropy as a quality measure for 3-D geological models[J].Tectonophysics,2012,526-529:207-216.
[13] 黎炬锋,吴庆禄,余文龙.基于三维块体切割分析及块体理论的高陡硬岩边坡稳定性分析[J].公路工程,2023,48(3):116-123.
[14] 何海波,杨雄,刘泽,等.多级粉砂岩质顺层边坡抗滑桩支护参数研究[J].湖南交通科技,2023,49(3):32-36.
基本信息:
DOI:10.19782/j.cnki.1674-0610.2024.03.009
中图分类号:TP181;U416.14
引用信息:
[1]易舜,魏星星.基于机器学习的获取高陡边坡地质信息的钻孔分布研究[J].公路工程,2024,49(03):58-65+90.DOI:10.19782/j.cnki.1674-0610.2024.03.009.
基金信息:
湖南省交通科技项目(202238)