nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.50 1-15+24
阴离子乳化沥青成型与稳定机制的粗粒化分子动力学研究
基金项目(Foundation): 新型道路材料国家工程研究中心项目(IFB019198); 湖北省自然科学基金面上项目(2023AFB634)
邮箱(Email):
DOI: 10.19782/j.cnki.1674-0610.2025.03.001
摘要:

采用粗粒化分子动力学(CGMD)模拟方法,系统地研究了阴离子乳化剂对乳化沥青形成与稳定性的影响,旨在为乳化沥青材料的优化设计提供理论依据。首先,基于Martini力场构建了水分子和阴离子乳化剂的粗粒化模型,验证了所用力场在描述该类体系中的可靠性与适用性。在此基础上,构建了乳液/沥青/乳液两相三层界面模型,以更真实地模拟乳化沥青的形成与稳定过程。研究发现,剪切速率和乳化温度对乳化沥青的形成具有显著影响。通过模拟不同剪切速率下的乳化过程,确定了0.000 5 ps-1为最佳剪切速率,此时乳化沥青的界面张力达到最小值,有利于形成稳定的乳化沥青。在乳化温度方面,研究发现85~90℃(对应沥青加热温度为150℃)为理想范围,该温度下沥青与水的界面张力最小,乳化沥青的形成最为稳定。在乳化剂种类对稳定性的影响研究中,研究选取了4种常见的阴离子乳化剂,从界面张力、界面生成能、组分浓度分布与界面厚度及扩散系数4个方面综合评估其对乳化沥青稳定性的作用。结果表明,十二烷基磺酸钠(SDSN)乳化剂在降低界面张力、减少界面生成能、增加界面厚度和提高扩散系数方面表现最为出色,能显著提升乳化沥青的稳定性。

Abstract:

The influence of anionic emulsifiers on the formation and stability of emulsified asphalt was systematically studied using coarse-grained molecular dynamics(CGMD) simulation method, aiming to provide a theoretical basis for optimizing emulsified asphalt materials. Firstly, a coarsening model for water molecules and anionic emulsifiers was constructed based on the Martini force field, verifying the reliability and applicability of the applied force field in describing such systems. On this basis, a two-phase and three-layer interface model of lotion/asphalt/lotion was constructed to simulate the formation and stability of emulsified asphalt more realistically.Research has found that shear rate and emulsification temperature have a significant impact on the formation of emulsified asphalt. By simulating the emulsification process at different shear rates, the optimal shear rate was determined to be 0.000 5 ps-1, at which the interfacial tension of emulsified asphalt reached its minimum value, which is conducive to the formation of stable emulsified asphalt.In terms of emulsification temperature, research has found that the ideal range is 85~90 ℃(corresponding to a heating temperature of 150 ℃ for asphalt). At this temperature, the interfacial tension between asphalt and water is the smallest, and the formation of emulsified asphalt is the most stable.In the study on the influence of emulsifier types on stability, four common anionic emulsifiers were selected, and their effects on the stability of emulsified asphalt were comprehensively evaluated from four aspects: interfacial tension, interfacial generation energy, component concentration distribution, interfacial thickness, and diffusion coefficient.The results showed that sodium dodecyl sulfonate(SDSN) emulsifier performed the best in reducing interfacial tension, decreasing interfacial generation energy, increasing interfacial thickness, and improving diffusion coefficient, significantly enhancing the stability of emulsified asphalt.

参考文献

[1] 念志伟,马航,宗世荣,等.乳化沥青的制备及其性能研究进展[J].云南化工,2024,51(1):10-16.

[2] ZHANG X P,XU J L,CAI Y C,et al.Properties and preparation of a new high-permeability emulsified asphalt and its modification[J].Applied Sciences,2022,12(24):12730.

[3] PENG Y,MIAO J K,YU X Y,et al.The effect of anionic emulsifiers' diversity and manufacturing processes on the stability and mechanical properties of the water-based epoxy-emulsified asphalt[J].Scientific Reports,2024,14(1):22268.

[4] 王怀庆,马培建.乳化沥青破乳速度定量研究进展[J].路基工程,2021(3):19-23.

[5] 曾启岚.沥青苯环结构对乳化沥青稳定性及破乳过程的影响研究[D].重庆:重庆交通大学,2024.

[6] 康家祥.非离子型环氧树脂乳化剂的制备及其性能研究[D].杭州:浙江理工大学,2021.

[7] 袁燕,陈宏宇,王叶飞,等.离子乳化剂对乳化沥青稳定性影响的分子模拟[J].湖南大学学报(自然科学版),2024,51(3):51-58.

[8] 龙正午.基于MD和AFM的氯盐侵蚀下沥青-集料界面微观粘附特性研究[D].湘潭:湘潭大学,2021.

[9] LI G N,HAN M Z,TAN Y Q,et al.Research on bitumen molecule aggregation based on coarse-grained molecular dynamics[J].Construction and Building Materials,2020,263:120933.

[10] HAN D F,MAO J C,ZHAO J Z,et al.Effect of surfactant hydrophobic chain equivalence on the oil-water interface and emulsion stability:a dissipative particle dynamics and experimental study[J].Journal of Molecular Liquids,2023,382:121781.

[11] SOUZA P C T,ALESSANDRI R,BARNOUD J,et al.Martini 3:a general purpose force field for coarse-grained molecular dynamics[J].Nature Methods,2021,18(4):382-388.

[12] 李强,储昭胜,罗宵,等.高掺量SBS改性乳化沥青的制备[J].湖北大学学报(自然科学版),2020,42(2):217-221.

[13] 全秀洁,许磊,雷孟坤,等.乳化条件对乳化沥青储存稳定性影响[J].公路交通技术,2021,37(5):24-28,34.

[14] SHARMA S,KUMAR P,CHANDRA R.Chapter 7-applications of BIOVIA materials studio,LAMMPS,and GROMACS in various fields of science and engineering[M]//SHARMA S.Molecular dynamics simulation of nanocomposites using BIOVIA materials studio,lammps and gromacs.Amsterdam:Elsevier,2019:329-341.

[15] 梁建.环氧乳化沥青单粒径矿料铺装层技术研究[D].西安:长安大学,2021.

[16] 范维玉,赵品晖,康剑翘,等.分子模拟技术在乳化沥青研究中的应用[J].中国石油大学学报(自然科学版),2014,38(6):179-185.

[17] 全秀洁.亲水基团对十二烷基阴离子乳化沥青稳定性及破乳过程的影响[D].重庆:重庆交通大学,2021.

[18] YOU L Y,LI X J,ZHU X B,et al.Stabilization mechanism and rheological properties of sustainable cold-mixed high rubber content emulsified asphalt[J].Construction and Building Materials,2024,450:138620.

[19] 马辉,张武兴,赵子力.模拟实际养生条件的乳化沥青冷再生混合料室内养生方式研究[J].公路工程,2025,50(2):157-164.

[20] 袁燕,陈宏宇,王叶飞,等.阳离子对乳化沥青稳定性影响的分子模拟[J].建筑材料学报,2023,26(10):1137-1142.

[21] 罗万力.基于分子动力学模拟的阴离子沥青乳化剂界面活性研究[D].重庆:重庆交通大学,2020.

[22] XU G J,WANG H.Molecular dynamics study of oxidative aging effect on asphalt binder properties[J].Fuel,2017,188:1-10.

[23] 彭夏磊.WER-SBR复合改性乳化沥青的制备及其性能表征[J].湖南交通科技,2024,50(1):26-30,67.

基本信息:

DOI:10.19782/j.cnki.1674-0610.2025.03.001

中图分类号:U414

引用信息:

[1]游凌云,王振博,谢慧军等.阴离子乳化沥青成型与稳定机制的粗粒化分子动力学研究[J].公路工程,2025,50(03):1-15+24.DOI:10.19782/j.cnki.1674-0610.2025.03.001.

基金信息:

新型道路材料国家工程研究中心项目(IFB019198); 湖北省自然科学基金面上项目(2023AFB634)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文