nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.50 34-52+94
跨海桥梁的钢筋混凝土结构劣化机理与防护策略分析
基金项目(Foundation): 福建省自然科学基金面上资助项目(2024J01264)
邮箱(Email):
DOI: 10.19782/j.cnki.1674-0610.2025.02.005
摘要:

跨海桥梁作为关键性的海洋基础设施,其钢筋混凝土结构的服役安全长期遭受高盐、高湿及干湿交替等苛刻腐蚀条件的严重威胁。这些腐蚀条件会诱发钢筋锈蚀、混凝土性能退化及物理破坏等一系列问题,进而威胁桥墩、主梁、桥面板、支座和缆索系统等关键部位的结构性能,使其逐渐出现性能衰退的迹象。文中系统综述了跨海桥梁的钢筋混凝土结构在海洋环境下的主要劣化机理,并在此基础上提出了可行的防护策略。一方面从材料本质上提升结构的耐久性,如采用高性能混凝土和耐蚀钢筋等,另一方面从外部为结构提供防护屏障,如利用防护涂层和阴极保护技术等。同时,强调了定期检测与维护措施的重要性,包括建立结构健康监测系统以实时掌握结构状态、定期外观检查以及时发现潜在问题、开展专项检测以深入了解结构性能的变化情况等。旨在通过优化防护策略来提高跨海桥梁的耐久性和安全性,确保其在苛刻海洋腐蚀环境下的长期稳定运行。

Abstract:

As a vital marine infrastructure, the cross-sea bridge's reinforced concrete structure's service safety is gravely endangered by severe corrosion circumstances such as high humidity, high salt, and prolonged dry and wet spells.These corrosion conditions can induce a series of problems such as steel corrosion, concrete performance degradation, and physical damage, which in turn threaten the structural performance of key parts such as bridge piers, main beams, bridge decks, supports, and cable systems, gradually leading to signs of performance degradation. The article systematically summarizes the main degradation mechanisms of reinforced concrete structures for cross sea bridges in marine environments, and proposes feasible protection strategies based on this. On the one hand, it improves the durability of the structure fundamentally from the material, such as using high-performance concrete and corrosion-resistant steel bars. On the other hand, it provides a protective barrier for the structure from the outside, such as using protective coatings and cathodic protection technology.The significance of routine maintenance and inspection procedures is also underlined, including the implementation of a structural health monitoring system to understand the structure's condition in real time, routine appearance inspection to identify possible issues early, and special inspection to fully comprehend how structural performance has changed. The aim is to improve the durability and safety of the cross-sea bridge by optimizing the protection strategy to ensure its long-term stable operation in the harsh marine corrosion environment.

参考文献

[1] 李承昌,郑晓华,郭杨,等.沿海普通钢筋混凝土桥梁的腐蚀、防护现状与不锈钢筋应用综述[J].公路交通科技(应用技术版),2017,13(1):19-22.

[2] 张利铨,林上顺,陶志蕾,等.跨海大桥RC桥墩防腐蚀研究进展[J].水利与建筑工程学报,2022,20(1):177-183.

[3] 李承昌,叶强.国内外混凝土桥梁腐蚀现状[J].公路交通科技(应用技术版),2016,12(2):30-35.

[4] 王正泉,李言涛,徐玮辰,等.全球腐蚀与防护领域研究现状与发展趋势分析:基于文献计量学和信息可视化分析[J].中国腐蚀与防护学报,2019,39(3):201-214.

[5] HOU B R,LI X G,MA X M,et al.The cost of corrosion in China[J].npj Materials Degradation,2017,1(1):4.

[6] 侯保荣,路东柱.我国腐蚀成本及其防控策略[J].中国科学院院刊,2018,33(6):601-609.

[7] 沈坚,何晓宇,侯保荣,等.交通基础设施腐蚀的现状[J].水运工程,2022(9):15-21,79.

[8] WANG D Q,MING J,SHI J J.Enhanced corrosion resistance of rebar in carbonated concrete pore solutions by Na2HPO4 and benzotriazole[J].Corrosion Science,2020,174:108830.

[9] 万齐,滕书华,杜召华.考虑氯离子侵蚀与冲刷作用的桥梁抗震韧性分析[J].公路工程,2024,49(4):22-28,73.

[10] 陈建康,杨敏.海工混凝土环境损伤力学研究进展[J].力学与实践,2023,45(3):499-512.

[11] 李佳祺,熊建波,范志宏,等.混凝土中钢筋的宏电池腐蚀研究进展与展望[J].硅酸盐学报,2021,49(8):1631-1641.

[12] HOU B R,DUAN J Z,ZHANG J L,et al.Tests for hanging steel specimens in seawater[J].Materials Performance,2002,41(10):45-49.

[13] 侯保荣,张盾,王鹏.海洋腐蚀防护的现状与未来[J].中国科学院院刊,2016,31(12):1326-1331.

[14] 朱相荣,黄桂桥.钢在海洋飞溅带腐蚀行为探讨[J].腐蚀科学与防护技术,1995,7(3):246-248.

[15] ZHAO W M,WANG Y,LIU C,et al.Erosion-corrosion of thermally sprayed coatings in simulated splash zone[J].Surface and Coatings Technology,2010,205(7):2267-2272.

[16] 侯保荣.海洋钢结构浪花飞溅区腐蚀防护技术[J].中国材料进展,2014,33(1):26-30.

[17] TREMPER B,BEATON J L,STRATFULL R F.Causes and repair of deterioration to a California bridge due to corrosion of reinforcing steel in a marine environment.Part ii:fundamental factors causing corrosion[J].Highway Research Board Bulletin,1958,182:18-41.

[18] B?HNI H.Corrosion in reinforced concrete structures[M].Cambridge:Woodhead Publishing,2005.

[19] KOREC E,JIRáSEK M,WONG H S,et al.Phase-field chemo-mechanical modelling of corrosion-induced cracking in reinforced concrete subjected to non-uniform chloride-induced corrosion[J].Theoretical and Applied Fracture Mechanics,2024,129:104233.

[20] PAPADAKIS V G,VAYENAS C G,FARDIS M N.Fundamental modeling and experimental investigation of concrete carbonation[J].Materials Journal,1991,88(4):363-373.

[21] XUE Q,ZHANG L W,MEI K Y,et al.Evolution of structural and mechanical properties of concrete exposed to high concentration CO2[J].Construction and Building Materials,2022,343:128077.

[22] 赵冰华,费正岳,赵宇,等.碳化对混凝土性能的影响[J].硅酸盐通报,2012,31(6):1641-1644.

[23] 刘超,蔡建赟,朱超,等.硫酸盐干湿循环作用下煤矸石喷射混凝土劣化机理[J].硅酸盐通报,2024,43(10):3686-3693.

[24] SETZER M J.Development of the micro-ice-lens model[C]//Frost resistance of concrete from nano-structure and pore solution to macroscopic behaviour and testing.Paris:RILEM Publications,2002:133-145.

[25] 祝金鹏.冻融循环后混凝土力学性能的试验研究[D].济南:山东大学,2009.

[26] 朱海威,范志宏,熊建波,等.冰冻海域跨海桥梁混凝土结构耐久性维护技术[C]//第九届海洋材料与腐蚀防护大会暨第三届钢筋混凝土耐久性与设施服役安全大会论文集,2023:192-193.

[27] 贾超,纪圣振,张峰.青岛海湾大桥混凝土墩的时变可靠度[J].吉林大学学报(工学版),2010,40(6):1543-1549.

[28] CHUNG C W,SHON C S,KIM Y S.Chloride ion diffusivity of fly ash and silica fume concretes exposed to freeze-thaw cycles[J].Construction and Building Materials,2010,24(9):1739-1745.

[29] KUOSA H,FERREIRA R M,HOLT E,et al.Effect of coupled deterioration by freeze-thaw,carbonation and chlorides on concrete service life[J].Cement and Concrete Composites,2014,47:32-40.

[30] ZHANG P,WITTMANN F H,VOGEL M,et al.Influence of freeze-thaw cycles on capillary absorption and chloride penetration into concrete[J].Cement and Concrete Research,2017,100:60-67.

[31] ZHANG P,CONG Y,VOGEL M,et al.Steel reinforcement corrosion in concrete under combined actions:the role of freeze-thaw cycles,chloride ingress,and surface impregnation[J].Construction and Building Materials,2017,148:113-121.

[32] SUN W,MU R,LUO X,et al.Effect of chloride salt,freeze-thaw cycling and externally applied load on the performance of the concrete[J].Cement and Concrete Research,2002,32(12):1859-1864.

[33] 王萧萧,申向东,王海龙,等.盐蚀-冻融循环作用下天然浮石混凝土的抗冻性[J].硅酸盐学报,2014,42(11):1414-1421.

[34] 莫祥银,许仲梓,唐明述.国内外混凝土碱集料反应研究综述[J].材料科学与工程,2002,20(1):128-132.

[35] 胡红梅,宋明辉,姚志雄,等.跨海桥梁混凝土结构耐久性的质量控制[J].混凝土,2008(11):114-116,125.

[36] FU C,XU X L,YIN G Z,et al.Surface engineering for cellulose as a boosted Layer-by-Layer assembly:excellent flame retardancy and improved durability with introduction of bio-based "molecular glue"[J].Applied Surface Science,2022,585:152550.

[37] 何静,杨纯田,李中.建筑行业微生物腐蚀与防护研究进展[J].中国腐蚀与防护学报,2021,41(2):151-160.

[38] PARKER C D.Mechanics of corrosion of concrete sewers by hydrogen sulfide[J].Sewage and Industrial Wastes,1951,23(12):1477-1485.

[39] DIERCKS M,SAND W,BOCK E.Microbial corrosion of concrete[J].Experientia,1991,47(6):514-516.

[40] 徐晶,郭坤宇,陈庆,等.微生物诱导碳酸钙沉积应用于混凝土表面防护研究进展[J].建筑材料学报,2024,27(11):1011-1021.

[41] 张盾,吴佳佳.海洋环境微生物腐蚀机理研究进展[J].海洋与湖沼,2020,51(4):821-828.

[42] LI Y C,FENG S Q,LIU H M,et al.Bacterial distribution in SRB biofilm affects MIC pitting of carbon steel studied using FIB-SEM[J].Corrosion Science,2020,167:108512.

[43] SUN X H,WAI O W H,XIE J W,et al.Biomineralization to prevent microbially induced corrosion on concrete for sustainable marine infrastructure[J].Environmental Science & Technology,2024,58(1):522-533.

[44] SUN M Q,YANG J,WANG Z B,et al.Effect of coexistence of sulfate reducing bacteria and nitrate reducing bacteria on the under-deposit corrosion of carbon steel[J].Corrosion Science,2024,231:111958.

[45] ISLANDER R L,DEVINNY J S,MANSFELD F,et al.Microbial ecology of crown corrosion in sewers[J].Journal of Environmental Engineering,1991,117(6):751-770.

[46] ESTOKOVA A,KOVALCIKOVA M,LUPTAKOVA A,et al.Testing silica fume-based concrete composites under chemical and microbiological sulfate attacks[J].Materials,2016,9(5):324.

[47] 游家庆,丁浪勇,刘冉冉,等.硫酸盐还原菌对耐微生物腐蚀钢腐蚀行为的影响[J].腐蚀与防护,2025,46(2):14-21.

[48] 罗大明,牛荻涛.基于钢筋锈蚀的混凝土结构耐久性评定[J].工业建筑,2022,52(10):1-8,70.

[49] 黄晋,卢微然,殷成龙,等.锈蚀对钢筋与混凝土之间粘结性能影响研究综述[J].材料导报,2024,38(增刊1):220-231.

[50] 栗帅,方鑫,陈晓清,等.泥石流排导槽混凝土材料磨蚀特性研究[J].工程地质学报,2024,32(5):1536-1545.

[51] 余波,毋铭,杨绿峰.混凝土保护层对钢筋腐蚀机理及腐蚀速率的影响[J].工业建筑,2014,44(7):112-119,169.

[52] 王胜年,苏权科,范志宏,等.港珠澳大桥混凝土结构耐久性设计原则与方法[J].土木工程学报,2014,47(6):1-8.

[53] 赵畅,王清湘.海洋环境下高性能混凝土耐久性试验研究[J].混凝土,2011(3):46-47,66.

[54] YANG L F,WANG L,YU B.Time-varying behavior and its coupling effects with environmental conditions and cementitious material types on surface chloride concentration of marine concrete[J].Construction and Building Materials,2021,303:124578.

[55] 谭刚.钢纤维混凝土技术在公路桥梁施工中的应用[J].建筑技术开发,2022,49(16):131-133,55.

[56] 邵旭东,邱明红,晏班夫,等.超高性能混凝土在国内外桥梁工程中的研究与应用进展[J].材料导报,2017,31(23):33-43.

[57] XUE J Q,BRISEGHELLA B,HUANG F Y,et al.Review of ultra-high performance concrete and its application in bridge engineering[J].Construction and Building Materials,2020,260:119844.

[58] REN L,FANG Z,WANG K.Design and behavior of super-long span cable-stayed bridge with CFRP cables and UHPC members[J].Composites Part B:Engineering,2019,164:72-81.

[59] 危春根,刘欢,邱明红,等.不同配筋形式超高性能混凝土梁受弯性能试验研究[J].公路工程,2019,44(6):196-202.

[60] 李杰,穆文均,廖万成.UHPC箱梁桥面体系主要设计参数优化及试验研究[J].桥梁建设,2024,54(5):85-93.

[61] 樊健生,丁然.超高性能混凝土在房屋建筑结构中的研究与应用进展[J].硅酸盐学报,2023,51(5):1246-1258.

[62] SHAO X D,YI D T,HUANG Z Y,et al.Basic performance of the composite deck system composed of orthotropic steel deck and ultrathin RPC layer[J].Journal of Bridge Engineering,2013,18(5):417-428.

[63] 马帅,张士红,邵旭东.钢-UHPC组合桥面板UHPC层受力性能研究[J].公路工程,2021,46(2):1-7,33.

[64] 石云冈,邵旭东,侍永生.大跨径波形钢腹板-UHPC组合连续箱梁桥力学性能分析[J].公路工程,2022,47(1):20-27,84.

[65] 武芳文,左剑,樊州,等.钢-ECC/UHPC组合梁负弯矩区力学性能研究[J].交通运输工程学报,2024,24(1):218-231.

[66] 赵柏冬,张一鹏,刘慈军,等.预制UHPC永久模板钢筋混凝土组合梁抗剪性能有限元分析[J].黑龙江交通科技,2024,47(4):100-104.

[67] 邵旭东,蔡文涌,曹君辉,等.型钢-UHPC轻型组合桥面板及其抗弯性能研究[J].土木工程学报,2024,57(6):152-168.

[68] ZHANG Y,ZHU Y P,YESETA M,et al.Flexural behaviors and capacity prediction on damaged reinforcement concrete (RC) bridge deck strengthened by ultra-high performance concrete (UHPC) layer[J].Construction and Building Materials,2019,215:347-359.

[69] 张阳,刘颖峰.高强钢丝网-UHPC加固损伤RC梁抗剪性能试验研究[J].公路工程,2022,47(5):26-32.

[70] 张阳,秦筵越,刘颖峰,等.预应力钢丝绳-UHPC复合加固损伤RC梁抗弯性能试验研究[J].公路工程,2023,48(2):1-6,80.

[71] ZHOU C,WANG J Q,SHAO X D,et al.The feasibility of using ultra-high performance concrete (UHPC) to strengthen RC beams in torsion[J].Journal of Materials Research and Technology,2023,24:9961-9983.

[72] 周贺贺,赵晋斌,蔡佳兴,等.耐蚀钢筋研究现状及腐蚀评价方法分析[J].腐蚀与防护,2017,38(9):665-670,682.

[73] 谢文珍,王震宇,韩恩厚.耐蚀钢筋在模拟混凝土孔隙液环境及海砂混凝土中钢筋在模拟海水环境中的钝化及腐蚀行为[J].中国腐蚀与防护学报,2024,44(6):1454-1464.

[74] 景强,方翔,倪静姁,等.2304不锈钢钢筋在港珠澳大桥的应用——钢筋耐蚀性能研究[J].公路交通科技,2017,34(10):51-56.

[75] 中科院金属所.中科院金属所成功研发一种新型耐微生物腐蚀双相不锈钢[J].表面工程与再制造,2015,15(5):65.

[76] CRAMER S D,COVINO B S Jr,BULLARD S J,et al.Corrosion prevention and remediation strategies for reinforced concrete coastal bridges[J].Cement and Concrete Composites,2002,24(1):101-117.

[77] EL-HAWARY M M,ABDUL-JALEEL A.Durability assessment of epoxy modified concrete[J].Construction and Building Materials,2010,24(8):1523-1528.

[78] 刘海燕,刘洋,陈开利.美国公路钢桥桥面板损伤研究[J].世界桥梁,2018,46(3):73-79.

[79] 艾志勇,孙伟,蒋金洋.低合金耐蚀钢筋锈蚀研究现状及存在的问题分析[J].腐蚀科学与防护技术,2015,27(6):525-536.

[80] 艾志勇,舒小平,荣耀,等.混凝土钢筋锈蚀防治技术研究与应用进展评述[J].材料保护,2020,53(9):107-113,132.

[81] LIU M,CHENG X Q,LI X G,et al.Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution[J].Construction and Building Materials,2015,93:884-890.

[82] 左龙飞,张建春,麻晗,等.一种Cr-Ni合金化耐蚀钢筋在氯盐环境中的腐蚀行为[J].腐蚀与防护,2017,38(2):83-90.

[83] WANG X,WU Z S,WU G,et al.Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge[J].Composites Part B:Engineering,2013,44(1):184-192.

[84] 叶华文,唐诗晴,段智超,等.预应力纤维增强复合材料(FRP)桥梁结构加固应用2020年度研究进展[J].土木与环境工程学报(中英文),2021,43(增刊1):185-189.

[85] BAI Y L,YAN Z W,JIA J F,et al.Dynamic compressive behavior of concrete confined with unidirectional natural flax FRP based on SHPB tests[J].Composite Structures,2021,259:113233.

[86] QIU Z J,PRABHAKARAN A,SU L,et al.Performance-based seismic resilience and sustainability assessment of coastal RC bridges in aggressive marine environments[J].Ocean Engineering,2023,279:114547.

[87] 常丁,庞立,雷涛.低预应力CFRP板加固RC梁模型试验研究[J].公路工程,2024,49(3):36-41.

[88] 张黎飞,郑愚,吴镇铎,等.纤维增强复材筋增强纤维水泥基复材桥面连接板工作性能研究[J].工业建筑,2019,49(9):82-89.

[89] LI C G,XIAN G J.Design optimization and experimental validation of a novel wedge-shaped bond anchorage system for prestressed CFRP plates[J].Polymer Testing,2019,75:167-174.

[90] GAO J,XU P H,FAN L Y,et al.Experimental study of fatigue and fracture behavior of carbon fiber-reinforced polymer (CFRP) straps[J].Polymers,2022,14(10):2129.

[91] 梅葵花,李宇,贾文科,等.纤维增强复合材料缆索锚固系统研究与应用进展[J].土木工程学报,2023,56(4):83-102.

[92] LIU Y,GU M Y,LIU X G,et al.Life-cycle cost analysis of long-span CFRP cable-stayed bridges[J].Polymers,2022,14(9):1740.

[93] FENG B,WANG X,WU Z S.Static and fatigue behavior of multitendon CFRP cables with integrated anchorages[J].Journal of Composites for Construction,2019,23(6):04019051.

[94] 韩建军,王俊伟,李果,等.改性纳米SiO2成膜复合涂层对混凝土疏水和抗碳化性能的影响[J].科学技术与工程,2019,19(19):268-273.

[95] ZHOU X N,HUANG H W,ZHU R,et al.Facile modification of graphene oxide with Lysine for improving anti-corrosion performances of water-borne epoxy coatings[J].Progress in Organic Coatings,2019,136:105200.

[96] WANG X,GAO K,CALDONA E B,et al.Cellulose nanocrystals-reinforced waterborne epoxy coatings with enhanced corrosion resistance for steel[J].International Journal of Biological Macromolecules,2024,257:128755.

[97] ZHOU C L,LI Z,LI J,et al.Epoxy composite coating with excellent anticorrosion and self-healing performances based on multifunctional zeolitic imidazolate framework derived nanocontainers[J].Chemical Engineering Journal,2020,385:123835.

[98] 杨志方.东海大桥防腐蚀需求与现状[J].世界桥梁,2004(增刊1):25-27,41.

[99] 穆鑫,魏洁,董俊华,等.牺牲阳极保护对Q235B钢在模拟海洋潮差区间腐蚀行为的影响[J].金属学报,2014,50(11):1294-1304.

[100] 刘俊利,徐振山.港珠澳大桥钢管复合桩牺牲阳极保护施工技术[J].价值工程,2019,38(9):96-98.

[101] HU J Y,ZHANG S S,CHEN E,et al.A review on corrosion detection and protection of existing reinforced concrete(RC)structures[J].Construction and Building Materials,2022,325:126718.

[102] 任敏,周汝毅,张羿,等.外加电流阴极保护技术对海港工程钢筋混凝土结构的防护[J].材料保护,2011,44(9):58-62,93.

[103] 钟东雄.外加电流阴极保护技术在跨海大桥索塔基础中的应用[J].现代交通技术,2013,10(2):60-63.

[104] HUANG X X,ZHOU Y W,ZHENG X B,et al.Bond performance between corroded steel bars and concrete in cathodic protection system with CFRP as anode[J].Composite Structures,2023,309:116739.

[105] 汤东婴,魏晓斌,孙正华,等.结构健康监测系统综述研究[J].智能建筑与智慧城市,2023(8):6-11.

[106] 王亚飞,杨钧羽,钟继卫,等.桥梁结构状态评估方法研究现状与展望[J].公路工程,2024,49(1):45-52.

[107] 王宗林,王潮海.大跨径钢管混凝土拱桥的动力性能改造[J].公路交通科技,2006,23(11):73-77,94.

[108] 冉启芳.无损检测方法的分类及其特征简介[J].无损检测,1999(2):75-80.

[109] 马晔.混凝土结构缺陷的红外热成像检测识别技术[J].公路交通科技,2017,34(12):59-65.

基本信息:

DOI:10.19782/j.cnki.1674-0610.2025.02.005

中图分类号:U441

引用信息:

[1]何润,周世康,刘璇等.跨海桥梁的钢筋混凝土结构劣化机理与防护策略分析[J].公路工程,2025,50(02):34-52+94.DOI:10.19782/j.cnki.1674-0610.2025.02.005.

基金信息:

福建省自然科学基金面上资助项目(2024J01264)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文